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Abstract 

 

In this paper we discuss the pivotal role played by Sir John Pendry in the development of Low 

Energy Electron Diffraction (LEED) during the past three decades; the earliest understanding on 

the physics of LEED to the development of sophisticated methods for the structural solution of 

complex surfaces. 

 

 

 

 



Introduction 

Over the past several decades, the field of surface crystallography has seen the continual 

development of techniques for retrieving surface structural information [1-3]. The pursuit novel 

structural and imaging methods has occurred in parallel with the steady experimental and 

theoretical development of the oldest surface structural technique; low-energy electron diffraction 

(LEED) [4-8].  It is in this field that John Pendry played a pivotal role from the earliest 

understanding on the theory of LEED to the development of sophisticated methods for the 

structural solution of complex surfaces. 

 

The phenomenon of electron diffraction was first postulated by de Broglie in 1924 [9]  and it 

arose as a natural consequence of the theory of wave-particle duality. Three years later the 

diffraction of electrons was observed in the famous experiment performed by Davisson and 

Germer [10]; a well-collimated beam of electrons incident on a nickel sample that was 

accidentally recrystallized by heating resulted in the formation of a diffraction pattern. Although 

the contemporary importance of this experiment was the validation of the wave nature of the 

electron there was another remarkable aspect to this observation: unlike the diffraction of X-rays 

from a solid, the electron diffraction pattern was two-dimensional. This suggested that the 

interaction of low energy electrons with a solid is confined to the first few atomic layers at the 

surface of the material. 

 

In the next issue of Nature, Thompson and Reid [11] reported the observation of electron 

diffraction occurring for incident electrons with higher kinetic energy. High energy electron 

diffraction developed very rapidly and became the foundation of Electron Microscopy [12]. 



However, the development of low energy electron diffraction as a structural tool did not occur 

until 40 years after the Davisson and Germer experiment. This long hiatus occurred for two 

reasons. The first was the necessity of understanding the behavior of electrons in an infinite 3D 

crystal and this was the primary focus of solid state physics during the intervening period. This 

was the foundation on which the understanding of electron-surface interactions was to be built. 

The second reason was experimental in nature. Davisson and Germer’s experiment was fortuitous 

because a laboratory “accident” resulted in the creation of (111) microfacets on their Ni sample. 

In order to employ LEED for reproducible and quantitative surfaces studies it was crucial to 

create clean surfaces of fixed orientation and maintain the sample in this state for the duration of 

the LEED measurement. This required the development of Ultra-High-Vacuum technology 

together with methods for preparing clean surfaces and monitoring their cleanliness. 

 
 
The Birth of LEED Crystallography 
 
 
I first met John Pendry in Cambridge where he was working on the theory to explain low energy 

electron diffraction (LEED). Experimental LEED underwent a renaissance by applying the 

postacceleration technique whereby the diffracted electrons were separated from the inelastically 

scattered electrons by a single metal wire mesh grid system and then accelerated onto a light 

emitting phosphor covered screen that displayed the diffraction pattern. The rapid retrieval of the 

diffraction information (microseconds) permitted one to obtain diffraction from clean surfaces in 

a vacuum before contamination by ambient gases occurred and the monitoring the formation of 

surface structures of adsorbed molecules that were deliberately introduced as a function of time. 

As long as the ambient gas pressures remained below the mean free path of the scattered electrons 

in the diffraction chamber, the orderings of adsorbed atoms or molecules could be readily 



monitored on surfaces. Single crystals of well-defined orientation were used in most of the LEED 

experiments as substrates and when adsorbed species ordered on those surfaces their orientation 

could be monitored with respect to the single crystal substrate. Evolution of the experimental 

LEED technique included determination of the size of the ordered domains on the surface from 

the coherence length of the incident monoenergetic electron beam, the mean square displacement 

of surface atoms from the surface temperature dependence of the diffraction beam intensities 

(Debye-Waller factor), ion bombardment cleaning of the single crystal surface to remove 

contamination and detection of the surface composition by the development and use of Auger 

electron spectroscopy. 

 

Many studies of clean surfaces and adsorbed atoms and molecules on single crystal surfaces were 

carried out under well-controlled experimental conditions. Surfaces of clean group IV, III-V and 

II-VI semiconductors were found to reconstruct, surface atoms occupying atomic positions that 

were different than that expected from the projection of the bulk unit cell. Metal surfaces and 

oxides also exhibited reconstructions. Adsorbed atoms and molecules in these surfaces formed 

many ordered surface structures that changed with coverage and with temperature. Theory, 

however, was missing to interpret the diffraction beam intensities to determine the precise 

location of surface atoms. 

The completion of the development of valence band structure calculations and UHV techniques 

converged in the mid 1960s and set the scene for the development LEED theory and experiment. 

At this time John Pendry, a student of Volker Heine, turned his attention to this problem. This 

time marked the beginning of John’s remarkable career as a seminal figure in the development of 

LEED crystallography over the next three decades. 



 

The experimental and theoretical advances in LEED surface crystallography came to fruition with 

the first reports of surface structures solved by Low-Energy Electron Diffraction (LEED) that 

appeared in the literature in the early 1970s [13-15]. These first applications of LEED theory were 

preceded by a time of fruitful debate and study of the fundamental nature of the interaction of low 

energy electrons with the surface of solids. The key physical features of the theory were: the 

importance strong elastic interaction of low energy electron with the surface atoms, the inclusion 

of multiple scattering processes and the proper description of inelastic processes by an inner 

potential.  

 

Given the constraints of this paper, it would be unfair to John to attempt a complete historical 

review of John’s extensive contributions to field surface science. Instead we shall highlight his 

key contributions to LEED. To understand John’s influence on the field there is no better place to 

start than with his monograph “Low Energy Electron Diffraction” which was first published in 

1974 [4]. This book contains the first comprehensive description of the basic physical ingredients 

of LEED presented in a clear manner that is characteristic of John’s intuitive way of 

understanding the physics of a problem: the springboard for his creative approach. In addition, 

this book is remarkable in clearly articulating John’s utilitarian direction: the goal of finding out 

where atoms are at surfaces [4]. A particularly notable aspect of John’s book were the appendices 

which included the complete Fortran computer codes developed by John. Although not 

recognized explicitly, John’s willingness to publish computer codes was very influential among 

the LEED community which continues to publish and make freely available it’s codes. 

 



Contained within this book are descriptions of two methods that revolutionized the calculation of 

LEED I-V spectra for comparison with experimental data. Both are efficient computational 

strategies for describing the interaction of electrons with surfaces. Prior to John’s work, LEED 

calculations were largely built upon 3D bulk methods where the presence of the surface broke the 

symmetry of the problem adding much complexity to the calculation [16] . John’s approach was 

different in that it exploited the broken symmetry to make the calculation easier and more 

efficient. The first application was the so-called layer-doubling method [4,17] where the surface is 

represented as a stack of identical 2D atomic planes. The basic idea is that once one has computed 

the transmission (t) and reflection (r) coefficients for single atomic layer the transmission (t2) of 

reflection coefficients (r2) of two atomic layers is obtained by the following operation: 

 

  
r2 = r1 + t1r1t1 + t1r1r1r1t1 +L= r1 + t1 1− r1r1( )

−1
r1t1, 

 

  
t2 = t1t1 + t1r1r1t1 +L= t1 1− r1r1( )

−1
t1     [1] 

 
Now one can obtained the transmission (t4) of reflection coefficients (r4) of a stack of four atomic 

layers but simply replacing t1 and r1 in equation 1 with t2 and r2.  For example, 

r4 = r2 + t2 1− r2r2( )
−1

r2t2        [2] 

By repeating this process one can generate the reflection and transmission coefficients for an 

arbitrary number of layers in the binary sequence N=1, 2 , 4, 8, 16, etc. This approach has two 

virtues. Firstly, the amount of computer time required to stack M layers scales in a sub-linear 

fashion as M increases. This can be compared to stacking algorithms where the atomic layers are 

added one at a time to generate a stack that scale linearly with M. As a consequence layer-



doubling is a highly efficient method. Secondly, this is a recursive algorithm that is ideally suited 

to a computer calculation with the corresponding minimal amount of coding. 

 

There is one remaining bottleneck in the calculation which was removed by John when he 

developed the so-called Renormalized Forward Scattering Method (RFS) [4]. The bottleneck in 

the layer doubling method is represented by equation 2 that requires the inversion of matrices.  

Matrix inversion is a computationally expensive process and scales as the dimension of the matrix 

cubed. Since the dimension of the reflection and transmission matrices of a single atomic layer 

scale roughly as the area of the unit cell the layer doubling method becomes very demanding 

when applied to surfaces where the unit cell is large (such as chemisorption systems). 

 

John proposed a method to get around this bottleneck based on a perturbation expansion, 

recognizing that the physics of the strong forward scattering of LEED electrons by atoms means 

that r1 <<1. Therefore the expansion should be in order of powers of the (small) parameter r1 , 

while flux conservation implies that t1 ≈ 1. Unfortunately the naïve approach of replacing 

everywhere the inverses with a simple power series expansion yields a power series for the 

reflection matrix of the stack that is not a uniformly convergent power series r1.     This means that 

in order to converge the stack reflectivity, one must include much higher powers of r1 than is 

necessary so that the expansion quickly more computationally demanding than the layer-doubling 

method. There is also no straightforward way to monitor convergence in order to terminate the 

power series as it is evaluated. 

 



Instead, John proposed an algorithm in which the LEED state in the surface was estimated 

through a series of sweeps through the stack of atomic layers, with each sweep picking up 

contributions to R which consisted of sequentially higher powers of r1. In effect, the RFS method 

automatically computes R as a uniformly convergent series in powers of r1. Not only is this highly 

efficient, but it also permits the monitoring of convergence through each sweep and termination 

of the calculation once a predetermined accuracy is reached. 

 

These methods were applied by John to perform the first detailed structural analysis an adsorption 

structure Ni(100)-c(2x2)Na using the beautiful LEED I-V spectra measured by Stig Andersson 

[18]. Their results offered the first tantalizing glimpse of the ability of LEED to elucidate the 

nature of chemical bonding at surfaces. Throughout the 1970s LEED was used to determine the 

structures of many clean surface and simple adsorption systems until, by the mid 1980s, several 

hundred surface structures were known. John was the motivating force behind producing the first 

electronic catalog of known surface structures, the so-called SCIS catalog [19] which resulted 

from the close collaboration between the Imperial and Berkeley groups. 

 
 
A New Dawn 
 
 
The availability of a multiple scattering LEED theory [4,20] made it possible for us to solve the 

surface structure of molecules adsorbed on single crystal metal surfaces. The first surface 

structure of adsorbed organic molecule, ethylene on the (111) crystal face of platinum we reported 

in 1979. We could determine the locations of five surface atoms per unit cell and thus ethylidyne 

–C-CH3 surface structure on it forms from ethylene C2H2 on the platinum surface was discovered 

[21]. This was followed by the surface structure determination of ethylene on the rhodium (111) 



crystal face [22]. The same multiple scattering LEED theory could be used to revisit the surface 

reconstruction of clean metal surfaces that was discovered in 1965 [23]. The surface structural 

model for the reconstruction of the clean (100) surfaces of platinum, gold and iridium could be 

developed [24]. 

 
This fruitful period of time evenly revealed a new set of problems in the application LEED 

crystallography. As the complexity of the surfaces increased so did the computational resources 

required to perform both the LEED calculations and the fitting of the calculated IV spectra to the 

experimental measurements. In the early 1980s, state of the art LEED structural analyses required 

the investment of several man-years. The only computers capable of running LEED codes within 

practical amount of time were shared supercomputers housed at national centers. For example, the 

calculation IV spectra for just a few hundred trial structures would take several hours of CPU 

time on a Cray-1S. Of course advances in computer technology would lead to the realization of 

the predictions of Moore’s Law so that by the mid to late 1980s it was possible to perform a 

similar calculation on a powerful personal computer. Yet, as John recognized, such advances 

would have relatively little impact on the structural solution of more complex surface structure. 

This is because the standard trial and error method of comparing calculated IV spectra from all 

likely structures represents, in mathematical terms, a NP-complete problem. This is because the 

computational resources/time needed to determine N structural parameters by trial and error 

scales in a decidedly non-polynomial fashion. In fact, the time to solution scales exponentially as 

the Nth power. Such scaling could never be beaten by advances in computer speed, even at the 

rate of growth predicted by Moore’s Law. 

 

 



Diffuse LEED 
 
John’s first shot across the bows of these problems was to develop a method of computing 

dynamical LEED patterns from disordered adsorption structures. This development in LEED 

theory by the Pendry and Berkeley group to solve the surface structures of disordered monolayers 

led to what is called Diffuse LEED [25]. In Berkeley, we solved the surface structures of 

disordered layer of benzene and ethylene on the platinum (111) crystal face [26-28] and working 

with the Erlangen group the oxygen adsorption structures of oxygen on W(100) were solved [25]. 

 

The difficulty of this problem arises from the fact that a disordered surface has a surface unit cell 

that has effectively infinite area. This means that the reflection and transmission matrices of 

layers or stacks of atoms belong to the infinite dimensional vector space of C22 rather than the 

finite dimensional space of the ordered surface problem. The Berkeley group pioneered a clever 

approximate solution to this problem: the beam-set-neglect method. The basis idea was to model 

the disordered surface as an ordered surface with a very large (but not infinite) unit cell and then 

use approximate methods to handle the calculation of the intensities in the LEED diffraction 

pattern. When a surface has a very large unit cell the LEED diffraction pattern consist of 

numerous closely spaced diffraction spots and, in the limit of an infinite surface unit cell these 

discrete spots merge to form a diffuse pattern. In this limit the diffraction spots of the ordered 

surface are simply discrete samples of the diffuse pattern. The key question the becomes: how 

large of a unit cell is needed to obtain convergence onto the true diffuse pattern of the disordered 

surface. 

 



Michel Van Hove recognized that the answer to this question lies in the basic physics of the 

interaction of low energy electrons with solids. Strong inelastic interactions result in a LEED 

electron having a relatively short mean free path,λ , while it is inside the solid. Typically 

λ ≈10−100A . This implies that an electron can only contribute to the diffraction pattern if it has 

traveled a distance of less than the mean free path while interacting with the surface. This 

suggests that the area of the surface unit cell in the ordered model of a disordered structure must 

be approximately λ2 or larger. This led to the development of  the so-called Beam Set Neglect 

method [8]. 

 

John took a somewhat more direct approach in his development of a theory of DLEED. John 

understood that if one is dealing with a disordered overlayer of atoms adsorbed on an ordered 

surface then any electron contributing to the diffuse component of the pattern must have 

interacted with at least one adsorbed atom. Electrons that interacted only with the ordered 

substrate would end up in the Bragg spots instead. Thus the adsorbed atom must be the locus of 

all scattering paths contributing to the diffuse pattern. Thus the computation of each multiple 

scattering path and be broken into three pieces, each of which could be computed using either 

conventional LEED theory or methods borrowed from the theory of SEXAFS. 

 
Tensor LEED 
 
In 1985 John initiated a revolution in LEED Surface Crystallography, one that to all intents and 

purposes solved the NP-complete problem mentioned earlier. John combined his experience and 

knowledge of the theory of DLEED, SEXAFS and HREELS to propose a new perturbative 

method which could rapidly compute the IV spectra from structural distortions of a so-called 

reference structure. 



 

In 1985 I was one of John’s Ph.D. students at Imperial College and I had just finished working on 

the extension of DLEED theory to surface defects such as vacancies and steps. John sketched out 

the theory of tensor LEED at one of our morning meetings where John would often serve proper 

brewed coffee. John’s notes occupied about half a sheet of paper he explained the idea very 

simply and intuitively. 

 

Tensor LEED is a perturbative approach to the calculation of LEED intensities [29]. One starts by 

defining a reference structure: a particular surface structure that we guess  

to be as close as possible to the  actual  surface  structure.  We then distort this surface by moving 

some of the atoms to  new positions. In this way we generate a trial structure that  is a structural 

distortion of the reference  structure  related by  a set  of  atomic  

displacements. 

 

To first order, the difference between the amplitudes of a LEED beam scattered from the 

reference and trial surface, δA can  be written  as  an  expression  which  is  linear   in   the   

atomic displacements  which generate the trial structure.  Thus, if we move N atoms through δrij  

(i=1..N, j=1,2,3):  

 

δA = Tijδrij
j=1

3

∑
i=1

N

∑ .         [3]  

 



The quantity T  is  the  tensor  which  depends  only  upon  the scattering  properties  of  the  

reference  surface  and  can   be calculated by performing what  is  essentially  a  full  dynamical 

calculation for this surface. Once T is known then the diffracted intensities  

for many trial surfaces can be evaluated extremely efficiently by summing eqn. T1 after  

substituting  the  appropriate  set  of  atomic displacements. This linear version of  tensor  LEED  

is  limited  to  atomic displacements of less than 0.1Å beyond which becomes  a  poor 

approximation. In this case we can appeal to a more sophisticated  version of the theory, one 

which allows  displacements  of  up  to 0.4Å, by reformulating eqn. T1 as:  

 

δA = TLl ' RLL ' δrij( )
L ,L '

∑
i=1

N

∑         [4] 

 

where 

 

  
RLL ' δrij( )= j

l
κδrij( )jl ' κδrij( )Yl 'm ' δrij( )Ylm δrij( ) 

 

 

In eqn. 4 we have replaced the sum over the three cartesian coordinates with a sum over angular 

momenta L=(l,m) and L'=(l',m'), the actual displacements of eq[1] being replaced by a  function  

R  of  those displacements consisting of the product of spherical Bessel functions and spherical 

harmonics. For small argument the decrease of the magnitude of the Bessel functions with order 

effectively cuts off the expansion. This, and the fact that $R$ is a symmetric matrix limits, the 

number of terms on the left side of eqn. 4 to around 37 for the magnitude of atomic displacements 



for which  this  equation  remains  valid. Consequently eqn. 4 is almost  as  straightforward  as 

eqn. 3 to evaluate and is our preferred formula for most situations.  

 

     The relative simplicity  of  the  mathematical   operations required to evaluate equations [3] or  

[4]  and  thus  intensities from many trial surfaces has important computational implications. 

Firstly, the  calculation   is   extremely   fast   compared   to conventional  full dynamical 

methods.  By   using   Tensor   LEED theory,  the computational time per trial structure can be 

reduced by a  factor of 50 for a simple surface such as Cu(100) to 10,000 for a p(2x2) overlayer 

system.  Secondly the time taken to  evaluate intensities by Tensor LEED is independent of the 

presence or  lack  

of symmetry within any  given  trial  surface.  Therefore we can consider highly asymmetric 

systems, such as off-center adsorption sites, with no loss of efficiency.  These surfaces were 

largely inaccessible  to  conventional  methods  due  to  the large  volume  of parameter space 

associated with such systems and the inability  to exploit symmetries.  

 

I made a most foolish promise to implement the method within two weeks, just in time to 

coincide with a visit of Klaus Heinz who would be bringing new set of DLEED data from 

Erlangen. I had not left his office for more that 5 minutes when my skepticism began to grow. 

The folklore of the LEED community that I had absorbed the previous two years and always seem 

to emphasize the failure of perturbation techniques for the strong scattering of LEED electrons 

John’s idea also involved the concept of a pair of time-reversed LEED states coupled by the 

perturbation. My lack of experience with Green’s function methods, lead me to believe that was 

impossible to compute a time reversed state when inelastic scattering was present because 



inelastic scattering would break any time reversal symmetry in the problem. So, rather than 

leaping forward into the calculation I spent my two weeks convincing myself that in the presence 

of inelastic scattering a LEED state could be time reversed. Unfortunately, John was not so 

convinced by my lack of progress when we met with Klaus Heinz two weeks later! 

 

Nevertheless, I moved forward and wrote out the complete theory of Tensor LEED which I then 

implemented as a computer code, using the Van Hove and Tong LEED package to compute the 

time reversed LEED states. The theory was tested against fully dynamical calculations and 

showed a remarkable level of agreement for atomic displacements far larger than I had expected. 

One could use TLEED to seek out the correct structure by moving atoms by up to 0.4A. At 0.2A 

the IV spectra were virtually indistinguishable from those obtained from a full multiple scattering 

calculation. The range of the perturbation approximation was critical to its future utility since a 

basic understanding of chemical bonding reconstruction at surface allowed one, in most cases, to 

select a reference structure for which the actual surface structure lay within the TLEED radius of 

convergence. The method was also ideally suited to iterative refinement where TLEED led the 

way for fully dynamical calculations to close in on the correct structure. 

 

I was fortunate to be able to incorporate the TLEED method into the computer codes used in 

Erlangen and Berkeley; groups that were performing structural studies of the most complex 

surface structures. I also was able to exploit the iterative nature of TLEED analysis to write some 

of the first LEED codes to perform automated structural refinement using optimization 

algorithms. This is especially important if we are to use an automated structure search since  we 



cannot predict in advance  that  the  path  to  be  taken  through parameter space by the 

optimization procedure will pass through only  

symmetrical trial surfaces. 

 

My basic codes were great enhanced by numerous individuals in Berkeley and Erlangen who 

created a suite of highly automated symmetrized codes. These codes were widely adopted by 

numerous groups around the world and are now the primary means of structural solution through 

LEED IV analysis. 

 

Tensor LEED represented a revolution in structural surface chemistry. As surface structure 

analysis could include the possible rearrangement of surface atoms as molecules adsorb, we found 

that the surface atoms undergo adsorbate induced restructuring in every case when adsorption 

occurs to form strong surface chemical bonds. The restructuring of rhodium and platinum 

surfaces under the influence of ethylene adsorption was discovered [28,30]. Several surface 

restructuring of rhenium with varying concentrations of sulfur was uncovered. The concept of the 

“flexible surface” could be proposed that restructures under the influence of chemisorption that 

changed our static view of surface structure to a dynamic one [31-33].  

 

The structural rearrangements of coadsorbed systems could be determined [34-36]. The complex 

surface structures of stepped metal surfaces could be analyzed [37,38]. These surfaces show 

exceptional chemical activity to break strong H-H, C-H, O=O and C=O chemical bonds and 

therefore are active sites for catalytic reactions. Tensor LEED permitted us to determine the clear 



surface structures of more complex solids such as magnetite (FeeO4) [39], ice [40] and sodium 

chloride [41] and lithium fluoride [42]. 

 

It is perhaps fitting to end this paper by reflecting upon John’s utilitarian vision of using LEED of 

finding out where atoms are at surfaces. Today it is possible for an experimentalist to take LEED 

IV data and then analyze it using publicly available computer codes without the assistance of a 

LEED theorist. While to some this might seem like a rather delicious irony, I cannot help but 

think that this was what John wanted all along. 
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